Breast Cancer Cell Line Aggregate Morphology Does Not Predict Invasive Capacity
نویسندگان
چکیده
To invade and metastasize to distant loci, breast cancer cells must breach the layer of basement membrane surrounding the tumor and then invade through the dense collagen I-rich extracellular environment of breast tissue. Previous studies have shown that breast cancer cell aggregate morphology in basement membrane extract correlated with cell invasive capacity in some contexts. Moreover, cell lines from the same aggregate morphological class exhibited similarities in gene expression patterns. To further assess the capacity of cell and aggregate morphology to predict invasive capacity in physiologically relevant environments, six cell lines with varied cell aggregate morphologies were assessed in a variety of assays including a 3D multicellular invasion assay that recapitulates cell-cell and cell-environment contacts as they exist in vivo in the context of the primary breast tumor. Migratory and invasive capacities as measured through a 2D gap assay and a 3D spheroid invasion assay reveal that breast cancer cell aggregate morphology alone is insufficient to predict migratory speed in 2D or invasive capacity in 3D. Correlations between the 3D spheroid invasion assay and gene expression profiles suggest this assay as an inexpensive functional method to predict breast cancer invasive capacity.
منابع مشابه
THE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES
Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...
متن کاملCD44 expression changes and increased apoptosis in MCF-7 cell line of breast cancer in simulated microgravity condition
Introduction: Studies have shown that simulated microgravity (SMG) affects tumor cell proliferation and metastasis. However, the underlying mechanism and its molecular basis are still not well known. In recent years, due to the role of CD44 in breast cancer and its high expression in invasive basal tumors, it has been the subject of extensive research. There is a conflicting data on the role of...
متن کاملIdentification of gene expression profiles that predict the aggressive behavior of breast cancer cells.
With the goal of identifying genes that have an expression pattern that can facilitate the diagnosis of primary breast cancers (BCs) as well as the discovery of novel drug leads for BC treatment, we used cDNA hybridization arrays to analyze the gene expression profiles (GEPs) of nine weakly invasive and four highly invasive BC cell lines. Differences in gene expression between weakly and highly...
متن کاملCo -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for delivery to breast cancer cell line
Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. CUR and SF have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of SF and CUR with magne...
متن کاملInvestigating the effect of lipid nanoparticles containing silibinin anti-cancer drug on the growth of breast cancer MCF-7 cell line
Background & Aim: Silibinin is a blend of flavonoids, which is extracted from Marianum Silybum, and its anti-cancer effects on breast cells have been studied. The aim of this study was to provide physiochemical evaluation of various formulations of the niosomal system containing silibinin, in order to achieve targeted formulation to better fight breast cancer cells. Methods: Nano-carriers were...
متن کامل